基本信息
摘要:本发明公开了一种耦合作物模型和机器学习的作物育种适应时间预测方法,包括如下步骤:S1:作物模型的校准和管理情景的模拟,以获得作物的生育期(DOY)和产量(Y);S2:选择关键特征变量,S3:构建混合评估模型,包括结合机器学习方法,选出精度最高的混合评估模型;S4:评估气候变化的影响,包括计算每个品种的产量变化(Yc);以及S5:识别育种适应的时间;包括计算各时间窗口内是否至少有任意的一半年份的所述产量变化的中值超过适应性阈值,如果满足条件,则确定该格点需要育种干预,育种适应的时间为所述时间窗口的中间时刻t;由此最终得到研究区在特定未来气候情景下需要育种适应的时间和地点。
摘要附图: